SUPPORT VECTOR MACHINE FOR MULTICLASS CLASSIFICATION OF REDUNDANT INSTANCES

SUPPORT VECTOR MACHINE HAS BECOME ONE OF THE MOST IMPORTANT CLASSIFICATION TECHNIQUES IN PATTERN RECOGNITION, MACHINE LEARNING, AND DATA MINING.

AN EFFICIENT MACHINE LEARNING PREDICTION METHOD FOR VEHICLE DETECTION: DATA ANALYTICS FRAMEWORK

THE RISE IN POPULATION HAS LED TO A CORRESPONDING INCREASE IN THE NUMBER OF VEHICLES ON THE ROADWAYS.

STREAMLINING STOCK PRICE ANALYSIS: HADOOP ECOSYSTEM FOR MACHINE LEARNING MODELS AND BIG DATA ANALYTICS

INTEGRATING MACHINE LEARNING MODELS WITHIN THIS ECOSYSTEM ALLOWS FOR ADVANCED ANALYTICS AND PREDICTIVE MODELING.

COGNITIVE APPROACH USING SFL THEORY IN CAPTURING TACIT KNOWLEDGE IN BUSINESS INTELLIGENCE

THE COMPLEXITY OF BUSINESS INTELLIGENCE (BI) PROCESSES NEED TO BE EXPLORED IN ORDER TO ENSURE THE BI SYSTEM PROPERLY TREATS THE TACIT KNOWLEDGE AS PART OF THE DATA SOURCE IN THE BI FRAMEWORK.

TACIT KNOWLEDGE FOR BUSINESS INTELLIGENCE FRAMEWORK: A PART OF UNSTRUCTURED DATA?

IDEA TO CAPTURE KNOWLEDGE FROM DIFFERENT SOURCES CAN BE VERY BENEFICIAL TO BUSINESS INTELLIGENCE (BI).

PENGELOLAAN PENGETAHUAN DAN INFORMASI DALAM BUSINESS INTELLIGENCE: PENDEKATAN KOGNITIF ANALITIK

Masalah terbesar untuk Knowledge Management (KM) adalah pada bagian pengetahuan individu yang bersifat tacit. Yang mana, pengetahuan tacit adalah pengetahuan dan pemahaman yang terdapat di dalam otak/pikiran individu, atau keahlian dan pengalaman seseorang yang mana biasanya pengetahuan ini tidak terstruktur, susah untuk didefinisikan, dan isinya mencakup pemahaman pribadi. Lebih jauh lagi, pengetahuan tacit bisa hilang jika terjadi merger, reorganisasi, dan apabila terjadi perampingan dalam sebuah organisasi. Analisis kontekstual yang didukung oleh sistem kognitif adalah sistem analisis lanjutan yang digunakan untuk mengumpulkan pengetahuan tacit. Teknik analisis kontekstual seperti peringkat relevansi digunakan selain pemodelan relasi entitas, ekstraksi entitas, penandaan suku cadang, dan sebagainya. Dengan demikian, data dapat dianalisis dalam sekumpulan pengetahuan implisit dan eksplisit. Yang mana pengetahuan eksplisit merupakan pengetahuan yang bersifat formal dan sistematis yang mudah dikomunikasikan dan dibagi, yang mana pada umumnya pengetahuan ekspilist dapat dengan mudah diperoleh dalam bentuk tulisan atau dokumentasi. Sementara itu, pengetahuan implisit merupakan sebuah kemampuan yang dapat dengan mudah ditransfer dengan menggunakan praktik, atau dengan memberikan contoh, seperti misalnya mengendarai sepeda atau kenderaan. Implisit merupakan pengetahuan yang dikumpulkan sehingga menjadi pakar berdasarkan pengalaman. 

Lebih jauh lagi, jika pengetahuan implisit dan berbagai perspektif disertakan dalam sebuah analisis, maka sebuah analisis yang bersifat kontekstual dapat menjadi analisis kognitif. 

Tulisan ini akan mengeksplorasi pendekatan kognitif untuk menganalisis KM di lingkungan Business Intelligence (BI).

Manajemen Pengetahuan atau KM merupakan sebuah alat strategis yang memiliki tujuan untuk membangun informasi dalam Intellectual Capital (IC) dalam sebuah organisasi. Manajemen biasanya menggunakan KM tool sebagai alat yang paling efisien untuk mengubah individu menjadi aset yang berharga. Selain itu, setiap tindakan efisiensi yang dilakukan dalam organisasi akan lebih mungkin dilakukan jika setiap organisasi telah melakukan proses BI pada jalur yang benar. Oleh karenanya, BI terkait erat dengan keberhasilan yang dicapai oleh KM. Suatu organisasi kemungkinan menghadapi masalah ketika sampai pada titik pelaksanaan dikarenakan kurangnya informasi yang diperoleh. Sementara itu, teknologi yang terdapat pada BI memainkan aturan penting dalam pengelolaan informasi dalam skala besar yang lebih baik. Namun, meningkatkan keterampilan setiap individu dalam sebuah organisasi bukanlah tugas yang mudah. Butuh waktu sebelum keterampilan yang diharapkan dapat diperoleh. Itulah sebabnya transfer pengetahuan sangat penting dalam organisasi terutama dalam proses menjelaskan pengetahuan dari satu individu sehingga mampu dipelajari dan diadaptasi oleh entitas manapun.

Business Intelligence

BI terdiri dari proses bisnis penting yang mengumpulkan dan menganalisis informasi untuk keputusan dan tindakan bisnis terutama pada penggunaan alat informasi untuk meningkatkan kinerja bisnis. BI terdiri dari teknologi, proses dan implikasi yang memungkinkan perolehan, penyimpanan, pengambilan dan analisis data untuk pengambilan keputusan yang lebih baik. On-Line Analytical Processing (OLAP) adalah sebuah alat BI yang memungkinkan pencarian dan pengujian data yang relevan beserta perhitungan dan identifikasi hubungan. Data mining dapat digunakan dalam proses mengidentifikasi tren, pola dan hubungan antara sejumlah besar data. Data mining menggunakan teknik statistik dan matematis seiring dengan teknologi. Sistem Pendukung Keputusan (SPK) adalah asosiasi manusia dan mesin untuk penyediaan informasi yang otentik dan berguna untuk mendukung manajemen dalam pengambilan sebuah keputusan. OLAP adalah salah satu komponen penting BI yang digunakan dalam melakukan sebuah proses analisis. OLAP memiliki beberapa bentuk, diantaranya adalah klasifikasi, pola sekuensial, analisis regresi dan link. Dengan demikian, proses BI adalah pendekatan yang relevan untuk menganalisis data pengetahuan yang dibutuhkan untuk menangkap dan menganalisis pengetahuan.

Manajemen Pengetahuan (Knowledge Management)

KM adalah teknik pencarian, akuisisi, pengorganisasian dan komunikasi informasi dan pengetahuan dalam sebuah organisasi. Pengetahuan bisa tersirat (tacit) atau eksplisit yang berkaitan dengan pemahaman kepemimpinan, usaha kelompok, pengalaman individu, dan jiwa karyawan. Akuisisi informasi yang relevan adalah proses mengidentifikasi dan menangkap materi yang terkait erat dengan tujuan saat ini. Pengambilan informasi adalah tahap kedua dari proses KM dimana organisasi mengeluarkan informasi spesifik dari berbagai sumber. Pengetahuan yang diambil dari organisasi akan diproses dengan menggunakan BI tool, teknik, atau framework, dan kemudian penggunaan pendekatan kognitif untuk pengetahuan tacit akan digunakan sebagai bagian dari solusi analitik.

Pendekatan Kognitif untuk Menangkap Pengetahuan

Pendekatan kognitif mampu merekam, menganalisa, mengingat, belajar, dan menyelesaikan masalah dari informasi yang tersedia dari pengetahuan dan pengalaman individu. Sistem kognitif saat ini juga dapat melakukan transfer pengetahuan dan menjadi praktik terbaik dalam kegiatan analisis data. Dalam kasus penggunaan ini, sistem kognitif dirancang untuk membangun dialog antara manusia dan mesin sehingga dapat dipelajari oleh sistem. Selama setiap pengetahuan bersifat probabilistik, selalu dipengaruhi oleh faktor manusia dan sosial, dan membutuhkan cara kognitif untuk dikelola, maka pendekatan kognitif cocok untuk hipotesis yang lebih dari satu untuk dianalisis. Oleh karena itu, tulisan ini akan menjelaskan penggunaan pendekatan kognitif untuk pengelolaan pengetahuan di lingkungan BI.

Metodologi

Teknik penelitian kualitatif telah diadopsi untuk tulisan ini. Teknik kualitatif ini meliputi analisis tinjauan dari berbagai literatur terhadap penelitian terdahulu dan model KM dan BI yang telah diusulkan. Kerangka teoritis sebagai pondasi penelitian juga telah dikembangkan dengan mengadopsi beberapa model penelitian sebelumnya. Dengan demikian, kebutuhan untuk kerangka kerja integrasi untuk mencapai tujuan ini ditunjukkan pada Gambar 1.

Gambar 1. Kerangka kerja teoritis integrasi KM & BI untuk mencapai daya saing

Pada tahap pertama metodologi adalah proses pengumpulan data, dimana para manajer diajukan beberapa pertanyaan yang berkaitan dengan pencapaian daya saing melalui KM dan penggunaan BI di dalamnya. Beberapa pertanyaannya adalah sebagai berikut:



. . .


Download Full Paper